Teil II Das CU-Book im Unterricht

1 Sei anders!

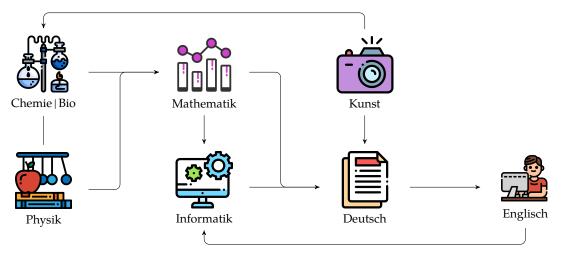
Wenn du es bis hierher geschafft hast, kann es ja nicht so schlimm gewesen sein ;-)

Ja korrekt, es ist dir schon aufgefallen. Das CU-Book ist kein klassisches Schulbuch, soll und kann es auch gar nicht sein. Es ist ein Hybrid aus Schul- und Sachbuch. Es schafft den Spagat, Inhalte aus den Lehrplänen (hier exemplarisch Chemie aus Bayern Tabelle 4 auf der nächsten Seite) und Computertechnik zu kombinieren. Das ist notwendig, da folgende Punkte (s. Kasten) in einem klassischen Schulbuch nicht möglich sind. Seit Einführung der Computer (oft nur Tablets!) in den Unterricht, werden der Nutzen und die Folgen nicht nur von Kritikern sehr intensiv bewertet. [21]

☼ Die Alleinstellungsmerkmale:

- Fächerübergreifende Themen
- Jahrgangsunabhängige Methoden
- Länderunabhängiges Computerwissen
- Kompendium für ALLE Inhalte
- **Ein Niveau** für alle

Schonungslos zeigen diese Beobachtungen, dass wir eine Koexistenz von analog und digital brauchen. Kinder wollen "begreifen". Die Vorteile sind so offensichtlich. Vergleichen wir die beiden Bilder. Können wir nicht beides miteinander verbinden?¹⁵



 $^{^{15}}$ Die beiden Bilder wurden KI generiert und zeigen, dass wir beides brauchen! Lass' die Bilder wirken.

Tab. 4: LP Bayern: Lernbereiche (LB), die im Laufe des Chemieunterrichts im NTG analog zum ISB behandelt werden. LB1 "Wie Chemiker denken und arbeiten" im LB1 werden hier nicht explizit aufgeführt. Die mit 및 markierten Einträge werden auch mit Computereinsatz durchgeführt.

	8	9	10	11	Q12/13
LB2	Materie Stoffgemische Trennverfahren Nachweisverfahren	 Energiestufenmodell Rutherford Ionisierungsenergie e⁻-Konfiguration Edelgase 	saure/basische Lsg.IndikatorenKonzentrationNeutralisation	Lebensmittelchemie • Nachweise Vit C • Titration • Chromatographie • Zucker & Chiralität	 Q12 nicht vertieft Atombau/Orbitale Chemische Bindung Energieträger Reaktionsdynamik MWG/Gleichgewicht
LB3	 Stoff- & Energieumsatz Energetik & Katalyse Atommasse Reaktionen Alkane Rechnen: M, V_M, m 	ElektrolyseGitterenergieSalzbildungRedOx-ProzesseBatterie & Akku	Oxidation v. AlkoholenNachweise v. AldehydenGärungRedOx im Alltag	PolysaccharideFetteProteineEnzyme/VerdauungErnährungökol. Fußabdruck	 RedOx-Gleichgewicht galvanische Zellen Freie Enthalpie Elektrolyse Laden & Entladen Elektromobilität
LB4	 Rutherford kein ESM (→ 9. Kl.) Moleküle, Metalle Salze und Strukturen Gitter 	 Valenzstrichschreibweise Orbitale VSEPR Mesomerie Mehrfachbindungen (E/Z) 	EsterkondensationFetteSeifenWaschmittelZucker (Keto-Edol)	PharmazieMagensäureNebenwirkungenVerdauungshilfsmittelPrä- & Probiotika	Q13 nicht vertieft • Farbigkeit/Absorption • pH & pK _s • Titration • Puffer
LB5	Nachweise	ElektronegativitätAlkohole & AldehydeSäurenNachweiseWasser (Anomalie)		SchmerzmittelAcetylsalicylsäureReinheitsprüfungAnalgetikaWirkprinzipien	nat. Makromolekülesynth. MakromolküleRecyclingPhotosyntheseWasserstoffspeicherKorrosion
Profil	 Laborführerschein Lösungsprozesse □ Dichte bestimmen Siede- & Schmelzdiagr. □ Stofftrennungen Gasnachweise einfache Kalorimetrie Metalloxidation Ionenwanderung □ Ionennachweise 	 Flammenfärbung Elektrolyse einfache Batterien Moleküldarstellung Nachweis von Mehrfachbindungen Nachweis funktioneller Gruppen Siedekurven Löslichkeitsversuche 	 Spiel mit Indikatoren Springbrunnen Leitfähigkeiten □ Experimente mit Lebensmitteln Kalorimetrie □ Oxidation von Alkoholen Gärung/Destillation Estersynthese Verseifung 	nicht vorgesehen	nicht vorgesehen

Abb. 46: Über den ZOCK-Bildungsplan können viele Fachschaften gemeinsam an einem großen Projekt arbeiten, indem der Einsatz des Computers hier im Mittelpunkt steht.

2 ZOCK — zukunftsorientierter Computerkurs

2.1 Geforderte Inhalte

"Der Wert der Bildung ist es nicht, Fakten auswendig zu lernen, sondern den Verstand zu trainieren", sagte bereits Einstein und er hatte so recht.

In der heutigen Zeit haben wir als Eltern und Lehrer die Pflicht, den Kinder zu zeigen, Computer nicht der Technik wegen einzusetzen, sondern sie als Gehilfen oder Werkzeuge zu verstehen, um Aufgaben zu lösen.

Wenden wir uns doch denjenigen zu, die wissen, was später auf die jungen Menschen wartet. Hier werden wir bei einer Karriereplattform unter <u>cubook.de/cu-karriere</u> fündig:

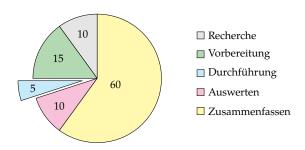
- Office-Anwendungen
- dynamische Präsentationen
- Web-Applikationen
- · Verständnis für Technik
- Programmiersprachen
- Datenvisualisierung
- Zusammenarbeit
- Kreativität

2.2 Integration in den Unterricht

In Anbetracht der langen Liste (s.o. unter *Kapitel 2.1*) stellt sich natürlich die Frage: "Wann soll ich das denn alles machen?"

Natürlich sollen nicht alle Arbeiten in einem Fach abgedeckt werden, wodurch sich nun endlich die Notwendigkeit ergibt, mit anderen Fachschaften zusammenzuarbeiten. Uiuiui!

In Abbildung 46 wird gezeigt, dass im naturwissenschaftlichen Unterricht die Recherche, Experimentplanung und Durchführung stattfindet, während die resultierende Datenauswertung die Mathematiker und Informatiker übernehmen. Der Kunstlehrer wird die Fotografie und Skizzenerzeugung mit entsprechender Technik durchführen. Der Spachenlehrer kann nun seine Fähigkeiten beim Verfassen des Berichts ausspielen.



Man kann sich aber auch die Frage stellen, welchen Anteil des Arbeitslebens der Computer einnimmt? Ein Naturwissenschaftler steht nicht mehr rund um die Uhr im Labor. Der Computer ist ein wichtiges Werkzeug, das viele Aufgaben übernimmt (*Abbildung 47*)

2.3 Beispielexperimente in den MINT-Fächern

Im Mittelpunkt der MINT-Fächer steht in allen Lehrplänen die Bedeutung wissenschaftlichen Arbeitens. Ehrlicherweise muss ich sagen, dass die Computernutzung in so viele Bereiche eingedrungen ist, dass sie auch im Unterricht vereinigt werden muss. Wir müssen also gerade bei der Vermittlung von Computerwissen die Fachstruktur als Einheit sehen.

Abb. 47: Tätigkeiten eines Wissenschaftlers. Weit über dreiviertel der Zeit verbringt man am Computer.¹⁶

Nun stellt sich die spannende Frage, wie sich die Fachschaften organisieren, um sich einem wissenschaftlichen Thema zu nähern. Möglicherweise trifft sich das Klassenteam im ersten Halbjahr und steckt wichtige Fragestellungen ab:

- Gruppeneinteilung
- Themenverteilung (Doppelbelegung)
- · Zeitbedarf für Fachschaften
- · Technikeinsatz, Beschaffung
- Projektdurchführung (2. Halbjahr)
- Abschlusspublikation als gesamt PDF oder Wordpress-Webseite

Spannend ist auch, Schülervertreter der Klassen zu solchen Treffen einzuladen, damit diese den Aufwand und die Bedeutung des Projektes nicht nur als Beschäftigung erkennen.

Tab. 5: Auswahl an Experimenten.

В	Fotosynthese	Licht vs. O ₂ -Prod.
В	Gärung	Temperatur, CO ₂ und EtOH
C	Hydratation	Temperatur: KCl vs. CaCl ₂
C	Destillation	Temperatur, Tropfenzähler
C	Siedekurve	Temperatur: Meer- vs. Süßw.
C	Titration	Temperatur, Tropfenzähler
C	3D-Moleküle	erstellen und drucken
P	Photovoltaik	Licht, Ampere, Volt
P	Boyle-Mariotte	Temperatur, Druck

2.4 Navigator

Um die Suche etwas leichter zu machen, können sich die Fachlehrkräfte mithilfe der Seitenangaben in *Tabelle 6* im CU-Book schnell orientieren und besonders relevante Seiten finden.

Tab. 6: Hier finden die jeweiligen Lehrer sofort zur richtigen Seiten.

Fach	Theorie	Praxis
Chemie Bio	39ff 51ff 58ff 72 163	39ff 44f 61f 68f 100-111 112ff
Physik	39ff 163	39ff 74f 112ff
Mathe	41f 118-125 126f 163	49f 71 74f
Informatik	150ff 17f 41f 163	48f 54f 73 85f 126ff
Kunst	34f 36f 46f	47f 63f 77ff 85f 130-149
Deutsch	33f 38 43	55ff 82ff 87ff 89ff
Englisch	19f 95f	80f

 $^{^{16}}$ Das sind persönliche Erfahrungswerte meiner Tätigkeit in der Forschung und in der Schule als Lehrer.